Rapidity Gap Events for Squark Pair Production at the LHC

Jong Soo Kim

Technische Universität Dortmund Theoretische Physik III

DESY Theory Workshop

in collaboration with Sascha Bornhauser, Manuel Drees and Herbi K. Dreiner

Jong Soo Kim (TU Dortmund)

RapGaps

01.10.2009 1/12

2 Rapidity Gap Events

3 Numerical Results

Squark Pair Production at the LHC

- Low energy supersymmetry will be tested at LHC
- squark pair production is one of the most important discovery channel
- even heavy squarks have large production cross section due to:
 - cross section is O(α²_s)
 - there are final states configurations, where initial states are valence quarks

for degenerate 1st and 2nd generation of squarks:

$$m_{\tilde{q}} \approx 1000 \,\mathrm{GeV}$$

 $\sigma \approx 0.5 \,\mathrm{pb}$
 $\mathcal{L} \approx 10 \,\mathrm{fb}^{-1} \,\mathrm{per}\,\mathrm{year}$
 $\mathrm{events} = \mathcal{L} \,\sigma$

\Rightarrow 5000 events are expected at low luminosity

Ν

Role of electroweak contributions

- it is important to know the squark pair production cross section with high precision
- NLO QCD correction were calculated in 1995
- correction were up to 20 % and remaining uncertainty is about 10 % level for higher QCD corrections
- we included EW contributions at leading order [Physical Review D76, 2007]

Results of electroweak contributions for squark pair production

- contributions from interference between QCD & EW is dominant
- in mSUGRA, EW contributions enhance cross section for two left-handed squarks up to 20%
- the pure QCD cross section can be enhanced up to 50% in models without assuming gaugino mass unification
- EW contributions can give rise to rapidity gap events

The basic idea of rapidity gap events

- color connected: QCD radiation between the two outgoing squarks
- not color connected: QCD radiation between the squarks and the beam remnants
- EW channels provide not color connected contributions

Picture of accelerated charge

small Θ_{CMS} dynamically preferred

 \Longrightarrow color connected: bremsstrahlung gluons emitted over most of rapidity region

 \implies non color connected: bremsstrahlung only populate a small region in rapidity

Rapidity gap events in a simplified picture

- two high energetic jets from squark decays and subsequent fragmentation

Some caveats:

- color connected events can fake rapidity gap events
- interference between color connected and not color connected diagrams
- decay products in the gap region
- ISR, FSR and underlying event (UE) can fill up the gap region

Jong Soo Kim (TU Dortmund)

RapGaps

Preliminaries for numerical simulation:

- mSUGRA ($m_0 = 100$ GeV, $m_{1/2} = 250$ GeV, $m_{\tilde{q}} \approx 560$ GeV) mass spectrum is assumed
- cross section for production of left-handed squarks is enhanced by a factor of 13% by EW contributions
- right-handed squark decays into lightest neutralino
- left-handed squarks squark decays into heavier neutralino/chargino, latter decaying leptonically

Cuts

- $E_{\mathrm{T}}^{\mathrm{jets}} \geq 100\,\mathrm{GeV}$ and $E_{\mathrm{T}}^{\mathrm{miss}} \geq 200\,\mathrm{GeV}$
- jets must be well separated in rapidity $\implies \Delta \eta \ge 3.0$
- EW contributions are much smaller for right-handed squarks in final states

 \implies isolate left-handed squarks by requiring at least two charged leptons of SS

Jong Soo Kim (TU Dortmund)

E_T of all particles in the gap region

- fully inclusive quantity
- first bin is statistically significant
- PYTHIA6.4 QCD prediction is larger than Herwig++ EW prediction
 - ⇒ current theoretical error cannot be estimated
 - \implies significant differences between the MCs

Minijet-veto against underlying event

- consider exclusive observable
- number of events where most energetic jet in the gap region has $E_T \leq E_{T,jet,max}^{gap}$ (normalized to one)
- consider only jets with $E_T \ge 5 \text{ GeV} \Longrightarrow |\text{cut} \text{ against UE}|$
- nearly all bins statistically significant effect of EW contribution
 Jong Soc Kim (TU Dortmund)
 BapGaps
 01,10,2009

10/12

- Herwig++ vs. PYTHIA6.4: theoretical error larger than the physical ones
- generate SM dijet events
- same systematical differences between the generators
- reduction of systematical differences after tuning with SM data
 Jong Soo Kim (TU Dortmund)
 RapGaps
 01.10.2009

11/12

Conclusion:

- squark pair production will be important; determination of the production cross section with high precision necessary
- even leading order EW contributions are important
- EW contributions give rise to rapidity gap events
- observable I: *E_T* deposit in rapidity gap region
- observable II: minijet-veto in gap region
- Herwig++ vs. PYTHIA: systematical differences larger than the physical ones
- reduction of the systematical differences might be possible after tuning with SM data
- an independent handle to search for supersymmetric events

イロト イヨト イヨト